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Abstract

Many of the methods of nonparametric density and hazard rate

estimation from right-censored observations are discussed. These

include histogram and kernel-type procedures, likelihood methods,

Fourier series methods, and Bayesian nonparametric approaches.

Examples of kernel density estimates are given for mechanical switch

life data where data-based choices of the bandvidtb values are used.
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1. Introduction

A common and very old problem in statistics is the estimation of an unknown

* .probability density function. In particular, the problem of nonparametric

probability density estimation has been studied for many years. Summaries of

results on nonparametric density estimation based on complete (uncensored)

random samples have been listed recently by several authors, including Frye [18),

Tapia and Thompson [52], Wertz and Schneider [60], and Bean and Tsokos [2],

Also, a review of results for censored samples has been given by Padgett and

McNichols [39]. In addition to its importance in theoretical statistics, non-

parametric density estimation has been utilized in hazard analysis, life testing,

and reliability, as well as in the areas of nonparametric discrimination and

h energy physics [20).

The purpose of this article is to present the different types of nonparazietric

density estimates that have been proposed for the situation that the sample data

are censored or incomplete. This type of data arises in many life testing

situations and is common in survival analysis problems, (see Lagakos [25] and

Kalbfleisch and Prentice [21], for example). In many of these situations, some

observations may be censored or truncated from the right, referred to as right-

censorship. This occurs often in medical trials when the patients may enter

treatment at different times and then either die from the disease under investi-

gation or leave the study before its conclusion. A similar situation may occur

in industrial life testing when items are removed from the test at random times

for various reasons. It is of interest to be able to estimate nonparametrically

the unknown density of the lifetime random variable from this type of data with-

out ignoring or discarding the right-censored information. The development of

Co
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such nonparametric density estimators has only occurred in the past six or

seven years and the avenues of investigation have been similar to those for

the complete sample case, except that the problems are generally more difficult

mathematically.

The various types of estimators from right-censored samples that have

been proposed in the literature will be indicated and briefly discussed here.

They include histogram-type estimators, kernel-type estimators, maximum like-

lihood estimators, Fourier series estimators, and Bayesian estimators. In

addition, since the hazard rate function estimation problem is closely related

to the density estimation problem, various types of nonparametric hazard rate

estimators from right-censored data will be briefly mentioned. Due to their

computational simplicity and other properties, the kernel-type density estima-

tors will be emphasized, and some examples will be given in Section 7.

Before beginning the discussion of the various estimators, in the next

section the required definitions and notation will be presented.

2. Notation and Preliminaries

Let Xju0j.,..X n denote the true survival times of n items or indi-

viduals which are censored on the right by a sequence UIU 2,...,U n which in

general may be either constants or random variables. It is assumed that the

X0,s are nonnegative independent identically distributed random variables
i

with common unknown distribution function F0 . For the problem of density

estimation, it is assumed that e is absolutely continuous with density fo.

The corresponding hazard rate function is defined by r 0 f /(1-F°).

The observed right-censored data are denoted by the pairs (XiAi),

il,...,n, where
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Xi .( 0 U1 if XS 5 U,
- ii

S min{A.U)1 ' 0 if Xi

Thus, it is known which observations are times of failure or death and which

ones are censored or loss times. The nature of the censoring mechanism depends

on the Ut's: (i) If U1 ,..,,Un are fixed constants, the observations are

time-truncated. If all Ui's are equal to the same constant, then the case

of Type I censoring results. (ii) If all U1 
M  , the rth order

0 o

statistic of X1 ,...,X0, then the situation is that of Type II censoring.

(Iii) If Ul,...,Un  constitute a random sample from a distribution H (which

is usually unknown) and are independent of X,...,XU, then

i-l,2,...,n, is called a randomly right-censored sample.

The random censorship model (iii) is attractive because of its mathematical

convenience. Many of the estimators discussed later are based on this model.

Assuming (iii), A l,...,n are independent Bernoulli random variables and the

distribution function F of each Xi, il,...,n, is given by 1-F - (l-F°)(1-H).

Under the Koziol and Green [24] model of random censorship, which is the propor-

tional hazards assumption of Cox [7], it is assumed that there is a positive

constant B such that 1-H - (1-F°) . Then by a result of Chen, Hollander, and

Langberg [6], the pairs (X ,Ui), i-1,...n, follow the proportional hazards

model if and only if (XIo.ogXn) and (A13 o..,A n ) are independent. This

Koziol-Green model of random censorship arises in several situations (Efron [11],

Csgrg6'and Horvith [8], Chen, Hollander and Langberg [6]). Note that B is a

censoring coefficient since a - P(X S U = (I+B) 1 , which is the probability

of an uncensored observation.

Based on the censored sample (Xi,.i). i1l,...,n, a popular estimator of

the survival probability S°(t) - l-F°(t) at t 2 0 is the product-limit
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estimator, proposed by Kaplan and Meier [22] as the "nonparametric maximum

likelihood estimator" of S°  This estimator was shown to be "self-consisLent"

by Efron 11]. Let (Zt,1 &), til,...,n, denote the ordered X 's along with

their corresponding A 's. A value of the censored ample vill be denoted by

the corresponding lower case letters (x ,.
6i) or (zi, 6j) for the unordered

or ordered sample, respectively. The product-limit estimator of So is defined

by 111]
l~ 1, O t < Z

Ak-l

Ct)- n-i A I-:l (-i l , t C (zklrZk , k-2...,n.

0, t > Z
n A

Denote the product-limit estimator of F°(t) by Fn(t) n W -P (t), and le

denote the jump of P (or F) at Z, that is,

- P{ n (Z ) J1 1 -(

sj P (Z) - Pn (Zj+l), J 2,...,n-1 (2. 1)

Pn(Zn J-n.

Note that s =O if and only if A' 0, j < n, that Is, if Z is a censored
i

observation.

The product-limit estimator has played a central role in the analysis of

censored survival data (Miller [36]), and its properties have been studied

extensively by many authors, for example, Breslow and Crowley [4], FUldes,

Rejti and Winter [15], and Wellner [59]. !any of the nonparametric density

estimators from right-censored data are naturally based on the product-limit

estimator, beginning with the histogram-type and kernel-type estimators.
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3. Histogram and Kernel Estimators

One of the simplest nonparametric estimators of the density function

for randomly right-censored samples is the histogram estimator. Although

they are simple to compute, histogram estimators are not smooth and are
generally not suited to sophisticated inference procedures.

Estimation of the density function and hazard rate of survival time

based on randomly right-censored data was apparently first studied by Gehan

[19]. The life table estimate of the survival function was used to estimate

the density fo as follows: The observations (xi.6i), iwl...n ere

grouped into k fixed intervals [tIt 2), [t2 ,t3),...[tko), with the finite

widths denoted by hi M ti~1 -tl, i1* ..,k-l. Letting n; denote the number

of individuals alive at time t, L, be the number of individuals censored

(lost or withdrawn from the study) in the interval [titi+), and di be the

number of individuals dying or failing in the ith interval (where time to death
A C

or failure is recorded from time of entry into the study), define q, M d /n
A A A

and Pil 1 - qiP where ni = nj - L /2. Therefore, qi is an estimate of

the probability of dying or failing in the ith interval, given exposure to risk

in the ith interval. Let Hi p H - where I1 E 1. Gehan's estimate of
0 i_1

f at the midpoint t of the ith interval is then

mi hmihI
"H _1 " "

t I i+1 q , i-l,...,k-l.=i hb = hi .

An expression for estimating the large sample approximation to the variance of

f(tM ) was also given in [19].

Using the product-limit estimator F of FO, FoIdes, RejtS, and Winter [16]
n

defined a histogram estimator of fo on a specified interval [O,T], T > 0.

-I:

• .. .. . . .. .... .... - .. -. .,-.. % . .. .. .. . , .. .. . .. ,.: - : - - .. .- . •: ;.. .. .". . . " -, .. :. . .... "., ,' A,
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(n) (n) <.00< t(n) T be a partition ofFor integer n >O, let O 0  ' o t I

[OT] into n subintervals n where

(n) . ) 1

Itn (n IIi

nn

Then their histogram estimator is

n(n)) ^ (n)
F (t Fn(tiln x n (tn )

f(x) (n) (n) x C (3.1)
ti  - ti

If x i [O,T], f(x) is either undefined or defined arbitrarily. Notice that

if none of the observations are censored, Fn  reduces to the empirical distri-

bution function, and (3.1) becomes the usual histogram estimator with respect

to the given partition. The strong uniform consistency of f on [0,T] was

proven by F~ldes, Rejto, and Winter [16] under some conditions on the partition,

provided that f0 was continuous on [O,T] and H(T-) < 1, where H(f-)

denotes the limit from the left of H at T. This last condition is common in

obtaining consistency properties under random right-censorship and insures that

uncensored observations can be obtained from the entire interval of interest.

Burke and Horvath [5] defined general density estimators which included

histogram-type and kernel-type estimators with appropriate choices of the de-

fining functions. They also obtained asymptotic distribution results for these

estimators. In fact, their results were obtained for the more general

situation of the k independent competing risks model. When k- 2, this reduces

to the random right-censorship model.

4V
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The histogram estimator can be obtained as a special case of the kernel

density estimators. The kernel-type estimators have been perhaps the most

popular estimators In practice due to their relative computational simplicity,

smoothness, and other properties. Kernel-type estimators from randomly right-

censored data have been studied only since around 1978, beginning with the work

of Blum and Susarla [3]. The investigation of kernel estimators for right-

*" censored samples has been attempted along the same lines as for the complete

sample case. However, due to mathematical difficulties introduced by the cen-

soring, some of the analogous theory to the complete sample case has not yet

been obtained.

Blum and Susarla [3] generalized the complete sample results of Rosenblatt

[45] concerning maximum deviation of density estimates by the kernel method.

To define the Blum-Susarla density estimator, let {h I be a positive sequence,n

called the bandwidth sequence, such that iim h = 0, and let N +(x) denote
n

the number of observed X 's that are greater than x. Define

: l+N+(X [ 0, Xx ]
H (x) - 11(n j-1 2+N+(X 3 )

where [A] denotes the indicator function of the event A. By a modification

of the product-limit estimator, it can be shown that H *s a good estimaten

of H 1-H. For a kernel function K satisfying certain conditions, the

Blum-Susarla density estimator is given by

f (x) n [nh [ h I1(3.2)

For example, K can be a bounded density function with support in the interval

[-A,A] for some A > 0 and absolutely continuous on [-A,A) with derivative

[• K- •.• * ° - • . o % - O ." ,~ - • -.K -, .. -** -o :- :: -,2
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K' which is square integrable on [-A,A]. By following standard arguments,
0f°*)n - 1 n n -  n

(f K((x-X J)/h) [A 1] and H (x) can be shown to be
,i" -i ,(xX~/~

. . good estimators of f (x)H*(x) and H (x), respectively.

0This motivates the use of (3.1) as an estimator of f (x).

Blum and Susarla also obtain limit theorems for the maximum over A.

finite interval of a normalized deviation of the density estimator (3.2),

* .These results are useful for goodness-of-fit tests and tests of hypotheses. a out

the unknown lifetime density fo.

It was conjectured by Blum and Susarla [3] that the kernel-type estinator

fn(x)"- h-1 j K((x-t)/h )d F (t)

( n n n

* * 0behaved in the same way as f where F wa, an estimator of F such as the
n' n

product-limit estimator. In fact, Foldes, RejtU, and Winter [16] proved

uniform almost sure convergence of f to fo when F was taken to be F ,
n n n

Specifically, one of their results was that sup Ifn(X) - f°(x)l - 0 almost
a<x<b

surely as n provided fo was bounded and had a bounded derivative on

(ab), - m a < b I -, K was right-continuous and of bounded variation,
,"'"n1/8 0

hn(n/log n) - , and H(T o) < 1, where Tim - sup{x: F°(x) < }. Again,

.- the last condition insured that observed lifetimes in the entire support of F
RL
0 would be available. It should be noted that if no censoring is present, then

f i(x) - h _ K((x-t)/hn)d F (t) (3.3)
n n n n

0 reduces to the Parzen [43] estimator.

McNichols and Padgett [32] wrote (3.3) in the form

in(X) -h n si K[(x-Z )/hn], (3.4)
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where sj is given by (2.1). They considered the mean, variance, and mean

squared error of (3.4) under the Koziol-Green model of random censorship des-

cribed in Section 2. This model allowed the expected value of f (x) to be

evaluated by using the independence of (Xl1 ....KX) and (A9"9.,A). In

particular, if K Is a Borel function such that suplK(t)t <-,

f -K(t)Idt < -, lim It K(t) I - 0, and r'. K(t)dt 1, then

Ef n (x) - a h 1 f gn(t)f(t)K((x-t)/hn)dt

+ (1-a)p (a)h-l E[K((x-Z /hn):]. (3.5)
n n n n

--1
where a - (1+0)- , b - 1-a, p (a) - TI [(n-i+b)/(n-i+l)],

* i-1

g(t) = n n-l+b [1-F(t)]n-i [F(t)]n JW1 J-1

n+b (n+b)(n+b-l) ... (n+b-k+l)/k!
k

F 1 1 - (l-H)(l-F ), and f is a density for F. Furthermore, it was shown

0that if hn -- 0, then lim E[f n(x)] - f (x), x > 0. Thus, under the Koziol-

Green model, f (x) is asymptotically unbiased for f (x) similar to the

complete sample case (the conditions on K and h are those imposed by Parzenn

143]). Second moment convergence was also obtained under the conditions that

*n h - o and b - P(a censored observation) < I in addition to the conditionsn

:. required for asymptotic unbiasedness above [32].
"o

For the kernel estimator (3.4), it is desirable to allow the data to play

* a role in how much smoothing is done. Since, for a fixed n, h is the

"smoothing constant," it would be reasonable to allow h to be a function ofn

the right-censored sample. McNichols and Padgett [35) consider this type of

,,,.,0- j.,., *.*... ., *., .
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modification, which extends the work of Wagner [54] to censored data. This

modified kernel estimator is

f (x) - r-II U~ 5jK[(X-z )/r~] (3.6)i-i

where rE rn(Xl,...,X n )  is some function of the censored data. For this

estimator it was shown that if H1(TFo) < 1, K has bounded variation,

lim xK(x) - o, r - 0 in probability (almost surely), and

nk(log log n)" a r in probability (almost surely), then f (x) -. f0 (x)
n

in probability (almost surely) at each x for which fo is continuous.

One choice of r satisfying the above conditions is as follows;

If y - [ne], < a < 1, where [-] denotes the greatest integer function,

let Din be the distance from Z to its Yn-nearest neighbor among

Z ... Z ... 0 1 j 5 n, and select Fn  to be D with

probability sj.

The practical choice of the bandwidth h for a given censored sample is

a problem which must be addressed in order to calculate the kernel estimator.

For complete samples, several "data-based" procedures for selecting a "good"

value of h for a given set of data have been proposed (see Scott and Factorn

[46], for example). Among these procedures when samples are right-censored,

the maximum likelihood approach seems to be feasible. This will be discussed

further in Section 6.

With the exception of the expressions for the mean, E[fn (z), in (3.5)

and for E[ 2(x)] under the Koziol-Creen model [32], very little has been

done concerning the small-sample properties of fn or any of the other kernel-

type density estimators in the censored data case. Padgett and McNichols [40]

UI ;-. ..: , , .;,.: . . . ,...; ..;.. .... :. ....... ...-:-.,., .. > . ..-.-
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* have performed Monte Carlo simulations for several parametric families of

*. lifetime distributions, uniform and exponential censoring distributions,

several kernel functions, and several bandwidths to determine the small-sample

behavior of f with respect to bias and mean squared error.

For estimating the hazard rate function r0  from randomly right-censored

data, F~ldes, RejtU, and Winter [16] considered estimators of the form

(x) f(x)

1-F (x) +-
n n

where f denoted either their histogram estimator (3.1) or their kernel-type

estimator (3.3). The 1/n in the denominator simply prevents dividing by zero.

- Strong consistency results for rn similar to those for (3.1) and (3.3) were

*' proven.

McNichols and Padgett (341 considered the kernel-type estimator of r0

given by

r(x) -h ( F (

x k 0 such that F(x) < 1,

under the Koziol-Green model of random censorship. Expressions for E[r (x)]

and var[r (x)) were obtained, and it was shown that r (x) was asymptotically
n n

0unbiased, and converged in mean square and in probability to r (x), extending

Watson and Leadbetter's [55,56] results.

Tanner and Wong [50] also studied a kernel-type estimator of r based

on the ordered censored sample (Zi,&i), i1,...,n, given by

k e .e , w o ~ ~ ..o . o . .° o o .• q . . . . .
• i iI- i ' " " ; " " ' *d
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A - U
jinl n

x a 0 such that F(x) - 1,

where K was a symnetric Integrable kernel with Kh(y) - K(y/h). They derived

* expressions for E[r(x)] and var[r(x)] and proved under the conditions on K

stated by Watson and Leadbetter[55,56] that r(x) was asymptotically unbiased

if h - 0 and nh n . The conditions assumed here were essentially the samen n

as those required by McNichols and Padgett [34], except for the proportional

hazards (Koziol-Green) model assumption which gave somewhat different expressions

for the mean and variance. The asymptotic variance was also obtained, and HaJek's

projection method was used to establish asymptotic normality under conditions

on K, F°, H, and h . Tanner and Wong [51] studied a class of estimators of
n A

the same general form as r(x) with Kh  replaced by K., where e was a

positive-valued "smoothing vector" chosen to maximize a likelihood function.

Hence, for this estimator the smoothing parameters vere chosen based on the ob-

served data.

Tanner [49] considered a modified kernel-type estimator of r0  in the form

rx W O2R,) i I - K((x-Z)/2tk)p

where was the distance from x to the kth nearest of the uncensored

observations among X *,..,X . This estimator allowed the data to play a role

in determining the degree of smoothing that would occur in the estimate.

Assuming that So and f were continuous in a neighborhood about

x,k - [n 1, Is < a < 1, where N,] was the greatest integer function, that K

had bounded variation and compact support on the interval [-1,1], and that

* .% o . o . . . .t .. .. % " • = . .. . . . .. . " , . , , , % .. % " ' . "
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0
r was continuous at x, It was shown that r (z) was strongly consistent.

Blum and Susarla [3] considered the estimator (in the notation of Equation

(3.2))

(fli*)n (x)
rn(x) - *(P) ' 0,

S n(x)

where S (X) - (number of Z 'a > x)/n. This estimator was also of the kernel

type, and limiting results similar to those stated for the density estimator

(3.2) were obtained for r nn

Ramlau-Hansen [44] used martingale techniques to treat the general multi-

plicative intensity model. His results are very general and include the kernel

estimators of hazard rate functions of F31des, Rejt5, and Winter [16] and

Yandell [61]. The martingale techniques yielded local asymptotic properties of

many of the hazard rate estimators in a simpler manner than classical procedures.

Finally, in a recent paper Liu and Van RyzIn [26] obtained a histogram

*" estimator of the hazard rate function from randomly right-censored data based

on spacings in the order statistics. They showed the estimator to be uniformly

consistent in a bounded interval and asymptotically normal under suitable

conditions. An efficiency comparison of their estimator with the kernel esti-

mator of hazard rate was also given. Also, Liu and Van Ryzin [27] gave the

large sample theory for the normalized maximal deviation of a hazard rate esti-

mator under random censoring which was based on a histogram estimate of the

subsurvival density of the uncensored observations.

4. Likelihood Methods

One approach to estimating a density function nonparametrically is that

of maximum likelihood. Nonparametric maximum likelihood estimates of a

I:



probability density function do not exist in general. That is, the likelihood

function for a complete sample is unbounded over the class of all possible

densities. However, by suitably restricting the class of densities, a nonpara-

metric maximum likelihood estimator (HLE) may be found within the restricted

class. For complete samples, the maximum likelihood estimator of a density g

°, was given by Barlow, Bartholomew, Bremner and Brunk [1) if g was assumed to

* be either decreasing (nonincreasing) or unimodal with known mode. Wegman

[57,58] assumed unimodality with unknown mode and found the MLE of the density

and studied its properties for complete samples.

McNichols and Padgett [33] studied maximum likelihood estimation of

decreasing or unimodal densities based on arbitrarily right-censored data.

The censoring variables Ul U...Un could be either constants or continuous

random variables. They first assumed that fo was decreasing (nonincreasing)

on [0,-) and let FD be the set of distributions with decreasing left-

continuous densities on [0,m). For the ordered censored observations

(zl,6 ), i=1,...,n, the likelihood function was written as

n 61 1-6!

L(f) - n [f(z [S(z 1
i-l

where S W 1-F°. It was shown that a maximum likelihood estimator of fo

must be a step function.

0
The estimator was found by maximizing the likelihood function L(f ) over

FD subject to the decreasing density constraint. Equivalently, the constrained

optimization problem to be solved was

K. n
maximize 1 {61 log yi + (l-61)log~l" y (z-zl)
y ,...y n

J -l J J 1
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subject to (1) y1 2 y2  '.k yn k 0

(ii) j=l yj(Zj -zj -
1) S 1.

where z 0. This function to be maximized was shown to be concave and the

problem was shown to have a unique solution, say yl,..,yn " Then any density

of the form

~0, x :O, 10* x

f Wx = y , Zj I < x < zi, J-I,...,n+l

0 . x > z V+l  L
00

was a maximum likelihood estimator of f . where Yn+, some value less than

or equal to yn' and zn(> zn) were chosen so that

.*n n~l n
1 - yj (Zj - z J_1 ) - Yn+l (Z n+l Zn).

Similarly, f 0 was estimated by maximum likelihood assuming that fo was

increasing (nondecreasing) on [0,M], M > 0 known. Then, if M denoted the

known mode of the unknown unimodal density, the two maximum likelihood estimators

on [0,M1] and on (M,-.) found as above could be combined to estimate the uni-

modal density. If f was assumed to be unimodal with unknown mode M, then

McNichols and Padgett [33] applied the above procedure for known mode, assuming

zj_ 1 < M < zi for each jinl,...,n, obtaining n solutions for fo. These n

solutions gave n corresponding values of the likelihood function. The maximum

0
likelihood estimator of f was then taken to be the solution with the largest

of the n likelihood values, analogous to Wegman's [57,58] procedure for complete

samples.
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Another approach to the problem of nonparametric maximum likelihood

estimation of a density from complete samples was proposed by Good and Gaskins

[20]. This method allowed any smooth integrable function on the interval of

interest (a,b) (which may be finite or infinite) as a possible estimator, but

added a "penalty function" to the likelihood. The penalty function penalized

a density for its lack of smoothness, so that a very "rough" density would have

a smaller likelihood than a "smooth" density, and hence, would not be admissible.

De Montricher, Tapia, and Thompson [9] proved the existence and uniqueness of

the maximum penalized likelihood estimator (HPLE) for complete samples.

Lubecke and Padgett [30) assumed that the sample was arbitrarily right-censored,

(XiA )9 i-l,...,n, and showed the existence and uniqueness of a solution to

the problem:

maximize L(g) subject to

g(t) 2 0 for all t e Q, f g(t)dt - 1, (4.])

and g e H(Q),

n 6 1-6
. where L(g) n f [g(x i) [l-G(x)] exp[-#(g)], U is a finite or nfinite

interval, H(S) is a manifold, and G is the distribution function for density

g. In particular, letting u =g and using Good and Gaskins' (20] first

penalty function, the problem (4.1) becomes:

n 6 x 2 ( 6)
maximize L(u) Rl [u(xl)] [l-f, u (t)dt j

i- 1

x exp[-2a 0 (u'(t)) 2dt], (4.2)

where x > 0, iml,...,n, f u2 (t)dt - 1, and u(t) a 0, t > 0.
i/M

Let x-i xI and 6-= 6 1 l,...,n, and define ;(x) u(IxJ) for

, - ,~~~~... ........-....-. •.-......,.. -.. % . ... '-'-'.'-"- ,-%...\ " ."- .. .- :.- .:".-..%. -..... ..- ;
.. .. .. - ' *a

'
I m -*** -:m ' ~ ~ - ,l ..-- ~~li " . ' '.,l :
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x R\{O) and u(O) - 1l u(x). Then define the following problem:

n i  x ;2 (-6 i)
maximize L(u)- II [i(xi)] [2-1± 2(t)dt]

Ill-1x exp[-2A ! _ (;,(t))2 dt], (4.3)

where u2 (t)dt - 2, u { H (-mS) C g(x) g(-x)),

and HI(-eo) is the Sobolev space of real-valued functions

such that the function and its first derivative are square

integrable.

If U solves (4.3), then it can be shown that U+(t) - u (t) t a 0,

and u+(t) - 0, t < 0, solves (4.2). Lubecke and Padgett [30] shoved that a

solution to (4.3) was a function u which solves the linear integral equation

(t) - C(t; E,0,) + (8z)L-  t [, i ( -)

0 ~ I= U2X (X i) (WX

x sinh [(Q/2a)h(t-T)] ;A(T)dT, (4.4)

where the forcing function is defined by

c~t= I,,x n i l 1  t(2aX) -j
"~t --C'X -2 [ i Xi exp(-(X/2ct)h it-xil)

+ exp(-(X/2a)hlt+x±i)]

- (1-61) [exp(-(A/2a)t) + exp((X/2)t)0
if-1 U2X (xi)

for a X > 0. The integral equation (4.4) can be transformed to a second-order

differential equation whose solution u can be numerically obtained. Then
-

(u+) is the IPLE of the density fo based on the first penalty function of

Good and Gaskins.

• -,,4 .. ..- ..-.- ,o,, -,, .,.., , . ...-, -.-,-.--".'-' '. ; ' ;. ;
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The nonparametric maximum likelihood estimation of the hazard rate function

r0 based on the arbitrarily right-censored sample (Xii), i-1,2,...,n, was

considered by Padgett and Wei [411 in the class of increasing failure rate (MFR)

distributions. The techniques of order restricted inference were used to obtain

the estimator following an argument similar to that of Marshall and Proschan [31]

for the complete sample case. A closed form solution to the likelihood function

of r subject to the IFR condition was found to be a nondecreasing step function.

Small sample properties of their estimator were indicated by a Monte Carlo study.

*Mykytyn and Santner [37] considered the same problem of maximum likelihood esti-

0
mation of r under arbitrary right censorship assuming either IFR decreasing

failure rate (DFR), or U-shaped failure rate. Their estimator was essentially

equivalent to Padgett and Wei's estimator and was shown to be consistent by using

a total time on test transform. This estimator was maximum Ikelihood in the

Kiefer-Wolfowitz sense.

Friedman [17] also considered maximum likelihood estimation from survival

data. Let n survival times be observed over a time period divided into 1(n)

intervals and assume that the hazard rate function of the time to failure of

individual J,rj(t), is constant and equal to ri > 0 on the ith interval.
A

The maximum likelihood estimate A of the vector A - (log ri1: J-l,...,n;

i=1,...,I(n)J gave a simultaneous estimate of the hazard rate function.

Friedman gave conditions for the existence of A and studied the asymptotic

properties of linear functionals of A in the general case when the true hazard

rate is not a step function. This piecewise smooth estimate of the hazard rate

can be regarded as giving piecewise smooth density estimates.

o,

-2 .* * -

";-'. ;.'- '.,.-2... '.-"* *
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5. Some Other Methods

Nonparametric density estimators based on Fourier series representations

have been proposed for censored data. Kimura [23] considered the problem of

estimating density functions and cumulatives by using estimated Fourier series.

A method for generating a useful class of orthonormal families was first

developed for the complete sample case and the results were then generalized

to the case of censored data. Variance expressions for the quantity

- *(x) dPn (x) were obtained, where * was chosen so that the variance

existed and P was the product-limit estimator. Finally, Monte Carlo simula-n

tion was used to test the methods developed.

Tarter [53] obtained a new maximum likelihood estimator of the survival

function So by using Fourier series estimators of the probability densities

of the uncensored observations and censored observations separately. That is,

the density estimates were f and f, obtained from the n, observed uncensored

X is and the n2 observed censored Xi's, respectively, where n1 + n2 - n.

It was shown that as n - - the new likelihood estimator approached the product-

limit estimator from above. It should be noted that the series-type density

estimators f and f used here were obtained by the usual complete-sample formulas.

The final series-type estimator to be mentioned here is the general esti-

mator of the density in the k competing risks model of Burke and Horvath [5].

It could be considered as a Fourier-type estimator by appropriate choices of

the form of the defining functions.

Another method that has been used for estimating hazard rate and density

functions is that of Bayesian nonparametric estimation. Since the work of

Ferguson [12,13], many authors have been concerned with the Bayesian nonparametric

I I * ~I-
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estimation of a distribution function or related functions with respect to the

Dirichlet process or other random probability measures as prior distributions.

For censored data Susarla and Van Ryzin [47,48] considered the estimation of the

survival function with respect to Dir4 chlet process priors, while Ferguson and

Phadia [14] used neutral to the right processes as prior distributions.

Padgett and Wei [421 obtained Bayesian nonparametric estimators of the

survival function, density function, and hazard rate function of the lifetime

distribution using pure jump processes as prior distributions on the hazard rate

function, assuming an increasing hazard rate. Both complete and right-censored

samples were considered. The pure jump process prior was appealing because it

had an intuitive physical interpretation as shocks occurring randomly in time

that caused the hazard rate to increase a constant small amount at each shock,

which also closely approximated the (random) increasing failure rate by a

(random) step function.

Dykstra and Laud [10] also considered a prior distribution on the hazard

rate function in order to produce smooth nonparametric Bayes estimators. Their

prior was an extended gamna process and the posterior distribution was found

for right-censored data. The Bayes estimators of the survival and hazard rate

functions with respect to a squared error loss were obtained in terms of a one-

dimensional integral.

Lo [28,29] estimated densities and hazard rates, as well as other general

rate functions, from a Bayesian nonparametric approach by constructing a prior

random density as a convolution of a kernel function with the Dirichlet random

probability. His estimator of the density with respect to squared error loss

was essentially a mixture of an initial or prior guess at the density and a

sample probability density function. His technique can be used f9r complete or

censored samples.

JU



22

6. Numerical Examples of Some Kernel Density Estimators

Of the many types of nonparametric density estimators available, probably

the most often used in practice are the kernel-type estimators. They are

relatively simple to calculate and can produce smooth, pleasing results. In

this section numerical examples will be given for the kernel estimator (3.4)

and the modified estimator (3.6) with the nearest neighbor-type procedure for

selecting rn•n

One problem in using kernel density estimators is that of how to choose

the "best" value of the bandwidth h to use with a given set of data. This

n

question has been addressed in the complete sample case by several authors

(see Scott and Factor [46], for example), and "data-based" choices of h haven

been proposed using maximum likelihood, mean squared error, or other criteria.

For the estimator (3.4) no expressions for the mean squared error for finite

sample sizes exist at present, except for those very complicated ones given by

McNichols and Padgett [32] under the Koziol-Creen model. Hence, selection of

h to minimize mean squared error does not seem to be feasible. However, Monten

Carlo simulation results of Padgett and McNichols [40] indicate that at each x

there is a value of h which minimizes the estimated mean squared error of
n

f (x) in (3.4). Similar results were also obtained in [40] for the Blum-
* n

Susarla estimator f (x) defined by (3.2). These simulation results indicated
n

a range of values of hn which gave small estimated mean squared errors of

f n(x) and fn (x) at fixed x. The maximum likelihood criterion for selecting

h for a given censored sample is feasible for f but does not seem to be
n n

tractable, even using numerical methods, for f due to the complications intro-
n

duced by the term H W in the likelihood expression. The maximum likelihood
n

**, -... ,*
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A

approach will be used in the following example for fno

Following a similar approach to expressions (2.8) and (2.9) of Scott and

Factor [46], consider choosing h to be a value of h t 0 which maximizesn

the likelihood

q 6 1-6
L(h) nI [f (Z )]j f (udu] (6.1)

n n
i

Obioslbydeiitonoff, hemxiumo (.1 i t -. eAe

n
the following modified likelihood criterion is considered:

maximize Ll(h) I1 [fnk(zk)] k f k(U)du] 1 (6.2)
h>O k=l k

where
n nfnk(Zk) -h -  K( h

j#k

For the standard normal kernel K(u) (27) - k exp(-u 2/2), the logarithm of (6.2)

becomes
n

log L (h) -- (X 6 ) log h
kul
n n

6 log[ (21)exp((z z
k=1 j.l k

j#k

n n
+ I (1-6k')log[ I sj(l-§((Zk-zj)/h))]. (6.3)

kul jul

J#k

where 0 denotes the standard normal distribution function. An approximate

(local) maximum of (6.3) with respect to h can be easily found by numerical

methods for a given set of censored observations, and this estimated h, denoted

by h , can be used in (3.4) to calculate f x).n

b'..,., .:..'-'.i .>- .:. . .- ...... ............. ... "... . ' " ' ' " ' " "" " . .' " "
.'.. .'.'. " ., . . '." " I . "\. -j.;""'...-"-\.- . '.-'%"% . . . . .""""""-'-
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For this example of the density estimation procedure given by (6.3) andIi(3.4), the life test data for n -40 mechanical switches reported by Nair 1381

are used. Two failure modes, A and B, were recorded and Nair estimated the

survival function of mode A, assuming the random right-censorship model. Table

I shows the 40 observations with corresponding 61 values, where 6, - 1 indi-
i"

cates failure mode A and 61 -0 denotes a censored value (or failure mode B).

Using this data, the function log L (h) had a maximum in the interval [0,11
A A

at h4 0  0.18. Hence, f4 0 was computed from (3.4) with bandwidth 0.18.

This estimate is shown in Figure 1. This maximum likelihood approach to select-

ing h does not produce the smoothest estimate, but is one criterion that can

be used.

Shown also in Figure 1 are the modified kernel estimates calculated from

(3.6) with the "y -nearest neighbor" calculation of r for the smoothing para-

meter values a - 0.60 and 0.75. The estimate was also calculated for a - 0.55,
A

but was very close to the fixed bandwidth estimate f40 with h - 0.18 and,

hence, is not shown. The modified estimator (3.6) with a - 0.75 is p]easingly

smooth, but with the small sample and only 17 uncensored observations, the

value of a - 0.60 might be a compromise between the very smooth (a - .75) and

somewhat rough (a -. 55) estimates.

'5

f
•
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TABLE 1. Failure Times (in Millions of Operations) of Switches

± z 6' z 6t

1.151 0 1.667 1 2.119 0 2.547 1
1.170 0 1.695 1 2.135 1 2.548 1
1.248 0 1.710 1 2.197 1 2.738 0
1.331 0 1.955 0 2.199 0 2.794 1
1.381 0 1.965 1 2.227 1 2.883 0
1.499 1 2.012 0 2.250 0 2.883 0
1.508 0 2.051 0 2.254 1 2.910 1
1.543 0 2.076 0 2.261 0 3.015 1
1.577 0 2.109 1 2.349 0 3.017 1
1.584 0 2.116 0 2.369 1 3.793 0

(Fig. I here)

* sa.P?.
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